Clases de Matemáticas y Física para Bachillerato Internacional

Mathematics Higher level Paper 3 – sets, relations and groups

Thursday 21 May 2015 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- mathematics HL for aper is [60 marks]. · Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- · A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

2215-7209

Clases de Matemáticas y Física para Bachillerato Internacional WhatsApp +51976438482 www.teoteves.com

-2-

M15/5/MATHL/HP3/ENG/TZ0/SG

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Consider the set $S_3 = \{p\,,\,q\,,\,r\,,\,s\,,\,t\,,\,u\}$ of permutations of the elements of the set $\{1\,,\,2\,,\,3\}$, defined by

$$p = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ q = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \ r = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$s = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \ t = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ u = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Let \circ denote composition of permutations, so $a \circ b$ means b followed by a. You may assume that (S_3, \circ) forms a group.

(a) Complete the following Cayley table

0	p	q	r	s	t	и
p		10		S		
q	Ċ		t			S
r		и		t	S	q
s	7	t	и			r
t		S	q	r		
и	1	r	S	q		

[5]

- (b) (i) State the inverse of each element.
 - (ii) Determine the order of each element.

[6]

- (c) Write down the subgroups containing
 - (i) r,

(ii) u.

[2]

Clases de Matemáticas y Física para Bachillerato Internacional WhatsApp +51976438482 www.teoteves.com

-3-

M15/5/MATHL/HP3/ENG/TZ0/SG

[2]

2. [Maximum mark: 10]

The binary operation * is defined for $x, y \in S = \{0, 1, 2, 3, 4, 5, 6\}$ by

$$x * y = (x^3y - xy) \bmod 7.$$

- (a) Find the element e such that e * y = y, for all $y \in S$.
- (b) (i) Find the least solution of x * x = e.
 - (ii) Deduce that (S, *) is not a group. [5]
- (c) Determine whether or not e is an identity element. [3]
- **3.** [Maximum mark: 12]

The relation R is defined on \mathbb{Z} by xRy if and only if $x^2y \equiv y \mod 6$.

- (a) Show that the product of three consecutive integers is divisible by 6. [2]
- (b) Hence prove that *R* is reflexive. [3]
- (c) Find the set of all y for which 5Ry. [3]
- (d) Find the set of all y for which 3Ry. [2]
- (e) Using your answers for (c) and (d) show that R is not symmetric. [2]
- 4. [Maximum mark: 9]

Let X and Y be sets. The functions $f: X \to Y$ and $g: Y \to X$ are such that $g \circ f$ is the identity function on X.

- (a) Prove that
 - (i) f is an injection,
 - (ii) g is a surjection. [6]
- (b) Given that $X = \mathbb{R}^+ \cup \{0\}$ and $Y = \mathbb{R}$, choose a suitable pair of functions f and g to show that g is not necessarily a bijection. [3]

Clases de Matemáticas y Física para Bachillerato Internacional WhatsApp +51976438482 www.teoteves.com

M15/5/MATHL/HP3/ENG/TZ0/SG

5. [Maximum mark: 16]

Consider the sets

$$G = \left\{ \frac{n}{6^{i}} \mid n \in \mathbb{Z}, i \in \mathbb{N} \right\}, \ H = \left\{ \frac{m}{3^{j}} \mid m \in \mathbb{Z}, j \in \mathbb{N} \right\}.$$

- Show that (G, +) forms a group where + denotes addition on \mathbb{Q} . Associativity may be (a) assumed. [5]
- (b) Assuming that (H, +) forms a group, show that it is a proper subgroup of (G, +). [4]

The mapping $\phi: G \to G$ is given by $\phi(g) = g + g$, for $g \in G$.

CLASES DE HIATERATION LE PRESENTATION DE LA SESTIMATION DESTIMATION DE LA SESTIMATION DESTIMATION DESTIMATION DESTIMATION DESTIMATION DESTIMATION DESTIMATIO Prove that ϕ is an isomorphism. (c) [7]

WhatsApp +51976438482 www.teoteves.com